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Dissipative quantum dynamics, entropy production and 
irreversible evolution towards equilibrium 

H J Korsch and H Steffen 
Fachbereich Physik, Universitat Kaiserslautern, D-6750 Kaiserslautern, West Germany 

Received 10 September 1986 

Abstract. A non-linear evolution equation for the density operator is proposed which 
models the irreversible dissipative time evolution of a system in contact with its surround- 
ings. Various properties of the proposed equation are discussed. As an illustration the 
three-state system is studied in detail. 

1. Introduction 

The problem of dissipative quantum evolution and irreversibility has attracted a lot 
of interest, especially during the past two decades. Reviews containing numerous 
references have been written by various authors; we would like to mention especially 
those by Hasse (1975), Messer (1979) and Dekker (1981). Dekker’s article is restricted 
to the damped harmonic oscillator, a system whose quantum dynamics has attracted 
much attention because of its ‘simplicity’. Even this simplified problem is far from 
being solved. Much less understood is, of course, the general problem of dissipation 
in quantum mechanics. 

In the following we construct a phenomenological equation of motion which 
describes dissipative dynamics. It may be helpful to visualise, as a typical situation, 
the time evolution of a ‘small’ subsystem of a big one, where the ‘big’ system as well 
as the coupling to the small one are not known in detail. We are only interested in 
the dynamics of the subsystem and we want to model its time development in a more 
or less phenomenological way. The resulting equation will be the non-linear differential 
equation for the density operator. 

Non-linear quantum evolution equations have been proposed previously by a 
number of authors. Kostin (1972,1975) proposed a non-linear Schrodinger equation 

which has certain drawbacks and therefore Schuch er al (1983, 1984a, b) recently 
proposed and motivated a modified equation 

$-  y(ln $-(In $))$. 

In both equations the Schrodinger equation is modified by adding a phenomenological 
dissipative-or frictional-term which includes a logarithmic non-linearity. y is a 
phenomenological constant. The subtracted average value (In 4 )  is responsible for 
conservation of the normalisation. A different, related, equation has bzen given by 
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Gisin (1981a, b, 1982a, b, 1983a, b, 1986). Gisin studied the equation 
. 1  

14) = % H I + )  - Y ( A  - (A))I+) (1.3) 

where H is the Hamiltonian and A is a Hermitian operator. Again the term (A)I+) 
guarantees conservation of norm. The nature of the operator A depends on the system 
under consideration, in particular the case A = H has been studied by Gisin. Different 
non-linear Schrodinger equations have been proposed by various authors (for a 
discussion see Hasse (1975) or Schuch et a1 (1983)). 

Two remarks should be made: first, (1.1) and (1.2) are given only in the position 
representation. A generalisation to a representation-free equation (like (1.3)) has not 
been given. Second, it should be stressed that the non-linear Schrodinger equations 
are intrinsically equations for the wavefunction or the state vector, i.e. they describe 
the time evolution of pure states. A pure state can, however, be considered as a highly 
exceptional state which must be carefully prepared. Any perturbation by contact with 
the surroundings is likely to destroy the pure state nature of the system. Note also-from 
the viewpoint of subsystem dynamics-that the state of a subsystem is generally not 
pure, even if the whole system is. If the subsystem is initially in a pure state, this 
property is generally destroyed when time increases. (Here the state of the subsystem 
is as usual defined by taking the partial trace of the density operator over the other 
degrees of freedom.) 

Most of the evolution equations for the statistical operator proposed until now, 
which should describe dissipative effects or subsystem dynamics, are linear. They are 
known as generalised-or Markovian-master equations. For a rigorous mathematical 
treatment see the monograph by Davies (1976) or the paper by Gorini et a1 (1978), 
where one can also find the concept of quantum dynamical semigroups which was 
investigated by several authors (for example, Lindblad 1976, 1983). Non-linear evol- 
ution equations for the statistical operator are rarely found in the literature. Messer 
and Baumgartner (1978) defined a non-linear ‘dissipative von Neumann equation 
corresponding to a dissipative Schrodinger equation’, and Beretta et a1 (1984, 1985) 
proposed a non-linear evolution for the statistical operator, which will be discussed 
later. 

It is the opinion of these authors that the phenomenological dissipative relaxation 
of a system should be preferably described by a non-linear equation of motion for the 
density operator. It is the purpose of this paper to present such a new equation. 
Section 2 discusses the case of a free dissipative relaxation. In Q 3 we consider the 
coupling to an energy (heat) bath as well as the constrained time evolution where the 
expectation value of the energy is kept constant in time. Section 4 generalises the 
equations. Section 5 contains some concluding remarks. In the present paper we 
restrict ourselves to the presentation of the basic theory, illustrated by some simple 
examples. A forthcoming article will discuss applications to more complicated (and 
physically more relevant) systems. 

2. Dissipative evolution 

The time evolution of the density matrix p for the system under consideration-specified 
by the Hamiltonian H-can be written as 
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where D ( p )  is a dissipative operator, which is still to be determined. Equation ( 2 . 1 )  
implies, of course, that memory effects are neglected, i.e. P ( t )  depends only on the 
momentary p ( t )  and not on its history p ( t ’ ) ,  t ’ <  t .  The real constant y measures the 
strength of the dissipative term. For y = O  we have ordinary quantum evolution 
according to the von Neumann equation 

1 
P =$K PI ( 2 . 2 )  

which conserves the von Neumann entropy (S) = Tr pS where we have used the notation 

S = -In p. (2 .3)  

It is worthwhile recalling that ( 2 . 2 )  conserves (S) for pure states ( p ’ = p )  as well as 
for mixed states ( p ’ #  p ) .  In the following any time evolution of p is called ‘dissipative’ 
if it does not conserve the entropy ( S ) .  

In order to ‘derive’ an  explicit expression for the dissipative operator D ( p )  we 
adopt the strategy to look for the most intuitive and  simple form satisfying a few 
necessary conditions. 

(i) T r  p = 1 is conserved. 
(ii) p (  t )  must remain Hermitian or-more specifically-positive. 
(iii) The time evolution of two independent systems which are not related by any 

coupling, constraints, etc, must be independent, i.e. for H = HI + H 2  we require p ( t )  = 

Eventually the resulting expression for D(p)  will be unique (it will not) or the 
uniqueness of D( p )  may be achieved by extending conditions (i)-(iii) by additional 
reasonable properties of D(p).  Restated for D(p) ,  the conditions (i)-(iii) are 

( i ) ’  Tr D(p) = 0 ( 2 . 4 ~ )  

(ii)’ D b ) +  = D(P) ( 2 . 4 6 )  

(iii)‘ D(PI@P,) = D ( P I ) ~ P , +  piOD(p2). ( 2 . 4 ~ )  

Equation ( 2 . 4 ~ )  can be easily derived by demanding that p 1 0 p 2  satisfies ( 2 . 1 )  for 
H = HI + H ,  and p l ,  p2 both satisfy ( 2 . 1 )  for HI ,  H,, respectively. Introducing the 
operator 6 by 

PI ( 1 )  0 P A  t 1. 

D(P) = f i ( P ) P  ( 2 . 5 )  

&PI 0 P2) ( P I  0 P2) = @PI )PI 0 P2 + PI 0 f i c  P21P2 

equation ( 2 . 4 ~ )  can be written as 

( 2 . 6 )  
which implies 

( 6 ( P l @ P 2 ) )  = (fi(PI))+(fi(P,H 

i.e. additivity of the functional ( f i ( p ) ) .  
A solution of the functional equation ( 2 . 6 )  is given by 

i j l ( p )  = -1n p = s 
as well as by 

(2.7 

(2.8 

f i 2 ( P )  =(-In P ) P  ( 2 . 9 )  

6( p ) = s - (s)n 

or by any linear combination of 6,  and 6,. We can satisfy the probability conservation 
( 2 . 4 ~ )  by 

(2.10) 
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(2.11) 

D ( p )  is obviously Hermitian. This is, however, not the only possible functional form 
satisfying (2 .4a) - (2 .4~) .  In particular 

D A ( P )  = +[A, PI+ - ( & J  (2.12) 

where A is a Hermitian operator and [ , ]+ denotes the anticommutator, is traceless, 
Hermitian and-with A = A, + A,-satisfies the functional equation ( 2 . 4 ~ ) .  

It has been shown (see, e.g., Ochs (1975) or the review article on entropy by Wehrl 
(1978) and references therein) that if we demand subadditivity, 

(S (P) )<  (S(P,))+(S(P2))  = (S(P lOP2) )  (2.13) 

where the systems 1 and 2 are no longer supposed to be independent, then the only 
possible functional forms are S = -In p or the Hartley entropy (=logarithm of the 
number of eigenvalues of p different from zero). It should also be noted that there is 
another possibility of deriving the entropy functional from a set of three axioms (see, 
e.g., the concise presentation by Thirring (1980)). 

In the following we adopt the choice (2.11), i.e. we consider the generalised von 
Neumann equation 

1 P =$H'pI+ r(S-(S)U)p. (2.14) 

Equation (2.14) describes the free dissipative time evolution, i.e. no additional condi- 
tions or constraints are imposed. In the remainder of this section we study the properties 
of (2.14) assuming, for simplicity, a finite-dimensional Hilbert space with dimension n. 

P n  = ( l / n ) J  (2.15) 
is a stationary solution of (2.14), which has the maximum possible value of the entropy 

It is useful to convert equation (2.14) for p into an equation for the operator 

p =e-' (2.16) 

It is clear from (2.14) that the equipartition distribution 

(S(P?I)) = In n. 

S = -In p. Starting from 

we obtain by differentiation (Wilcox 1967, equations (2.1) and (2.5)) 

p = -  ~ o l e x p [ - ( l - u ) S ] S e x p ( - u S ) d u  

1 
Ih 

=r-[H, exp(-S)]+ r(S-(S)U) exp(-S) 

1 
ih exp[-(1- u ) S ] [ H ,  SI exp(-uS) du - - -- I,' 

+ Y J exp[-(l - u ) S ] ( S - ( S ) O )  exp(-us) du (2.17) 
0 

or 

(2.18) 
Idexp(uS)(S-h[H,S]+y(S-(S)1)  1 exp(-uS)du=O 
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which implies (because eus is positive for real U )  that the term in large brackets 
vanishes, i.e. S satisfies 

(2.19) - 1  s = p ,  SI-y(S-(S)U). 

Equation (2.19) again shows the stationarity of (2.15). 
A direct consequence of (2.19) is the non-decreasing property of the entropy 

(2.20) 
d 

- (s)=Tr(Sp+SP)= y((S’)-(S)’)LO. 
d t  

Equation (2.20) determines the sign of the constant y to be positive. Another con- 
sequence of (2.20) are the uniqueness properties of the stationary solution (2.15), 
because stationarity gives ( S 2 )  = ( S ) 2 ,  which implies p = pm = (l/m)U,, where U, is the 
unit operator on a m-dimensional subspace and zero elsewhere. This m-dimensional 
subspace is spanned by eigenvectors of the Hamiltonian H .  The entropy of these 
stationary solutions is (S)=ln  m. In particular the pure states ( m  = 1 )  p =I$)($I and 
the equipartition distribution po = (l/n)U with entropy ( S )  = 0 and ( S )  = In n are non- 
dissipative. Stationary pure states satisfy [ H, p ]  = [ H, I $)( $11 = 0, i.e. 1 $) is an eigenvec- 
tor of H. The stationary states with m # n are, however, unstable. Any small distortion 
drives the state to the stable maximum entropy solution pn = ( 1 /  n ) l .  

The time dependence of expectation values of an observable B, which may depend 
explicitly on time, is given by 

(2.21) 

which simplifies if E commutes with H. In particular, we obtain for the expectation 
value of the energy 

d 
- ( H )  = . )I((HS) - - (HW)).  (2.22) 
dt  

For pure states ( p 2 = p )  S is equal to zero, i.e. (2.14) reduces to the ordinary von 
Neumann equation. This shows that (2.14) cannot be identified with the non-linear 
Schrodinger equation (1.2) for pure states despite structural similarities. 

It will be instructive to study the time evolution of the n-state system with time- 
independent Hamiltonian explicitly. Let us assume that p is diagonalised with eigen- 
values p I  and normalised eigenvectors Ii), which are, of course, time dependent: 

P (  111 i ( t ) )  = PI( t)l i( t)). (2.23) 

p is positive with unit trace, which implies p ,  5 0 and Zip, = 1 .  Taking the time 
derivatives of (2.23) we obtain 

d 
(iJ - P,NI 9 = (PIU - P 1 zl i )  (2.24) 
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and, after inserting the generalised von Neumann equation (2.14) and taking matrix 
elements with l j?, 

(9 = -c PI In PI 

H,! =(JlHli?. 

I 

The time evolution of the non-diagonal contributions j # i is given by 

which leads to 

(2.25) 

(2.26) 

(2.27) 

for p r  # p j .  Equation (2.27) can be solved for li) by conventional basis expansion with 
a time-independent orthonormal basis lp? 

(2.28) 

(2.29) 

where the fi”, are matrix elements with respect to the basis I F ) :  fi,, = ( v l H I p ) .  It  
should be noted that this evolution is non-dissipative, i.e. independent of y .  The 
eigenstates of p evolve exactly as those satisfying the usual von Neumann equation. 
More interesting is the time evolution of the eigenvalues: the diagonal part of (2.25) 
gives 

P ,  = - r ( I n p , + ( S ) ) p , .  (2.30) 

First we observe again that ( S )  is non-decreasing, as already shown above: 

(2.31) 

As a further consequence one can show that the time evolution (2.30) is mixing 
enhancing (compare Wehrl 1978, § II.C), which is a stronger property than entropy 
increasing. Details are given in the appendix. 

Equation (2.30) also conserves positivity of p, since no eigenvalue of p can cross 
zero ( p , (  to)  = 0 implies p,( t )  = 0 for t > to) .  Stationary eigenvalues p, = 0 are found for 

( i )  PI = o  
(ii) -In p ,  = ( S )  for p ,  # 0. 

(2.32) 

A density with no initial population of state i will never populate this state. ( i i )  implies 
that for p ,  # 0 all stationary p I  are equal and hence we have 

PI = l / m  forp,(to) + o  (2.33) 
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where m counts the p ,  different from zero. The only stable stationary distribution is 
the maximum entropy equipartition distribution p, = ( l / n ) l ,  where ‘stable’ means that 
any small perturbation of p, will evolve back towards it. In other words, pn is the 
only stable attractor and the basin of attraction (the set of all p, which develop 
asymptotically towards p, )  consists of all p with p ,  # 0, i = 1, . , . , n. 

Let us look at the simple case of two- and three-state dynamics in more detail. In  
the two-state case we have two eigenvalues of p :  p and q = 1 - p .  Equation (2.30) 
reduces to a single differential equation for p :  

P = -y(ln P+(S) )P  

= Y P ( 1  -P) InC(1 -P)/Pl  (2.34) 

where 

( S )  = - p  In p - (1 - p )  In( 1 - p )  (2.35) 

has been inserted. For p =+ we have 0 = 0 and for p =++ U linearisation of (2.34) 
yields ti = - y u  and hence U = uo exp[ - y (  t - t o ) ]  or 

~ = t + ( p ~ - t ) e x p [ - ~ ( t - t ~ ) l  (2.36) 

i.e. we have an exponential decay towards equilibrium. 
Entropy ( S )  and p are shown in figure 1. The stable (maximum entropy) and 

unstable stationary distributions are marked by circles. After separation of variables 
and substitution of x = (1 - p ) / p ,  (2.34) can be integrated in closed form: [ (io ) ~ X P [ - Y ( ~ - ~ ~ ) I ]  - 1  

p ( t ) =  1 +  --1 (2.37) 

with p o  = po( to) .  For t + CO, p (  t )  converges to the equilibrium value of i, provided, of 
course, that p o  # 0. The time dependence p (  t )  is shown in figure 2. 

The three-state case is less trivial. The state with eigenvalues p l ,  p z ,  p 3  can be 
conveniently described in a triangular plot, where each state {(pi, p z ,  p , )  1 p ,  , p z ,  p ,  3 0, 
p i  + p 2 + p 3  = 1) is represented as a poirit in the interior of an equilateral triangle with 
unit height. The entropy ( S )  is shown in figure 3( a )  and the time evolution is depicted 
in figure 3 ( b ) ,  which shows the time dependence of the eigenvalues p i .  The boundary 
equilibria are unstable stationary points and all states approach the maximum entropy 
equipartition distribution pI = p z  = p 3  = f , except those on the boundary. 

0.2 \ 
- /--‘ 

- 0.8 

0 0.2 0.6 1 .o 
P 

Figure 1. Two-state system. Entropy ( S )  (-) and  time derivative o f  the probability p 
to be in state 1 ( -  - - - ) .  The stable (0) a n d  unstable (0)  stationary distributions are  marked. 
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1 .o 

0.5 

0 1 2 3 4 

Figure 2. Two-state system. Time dependence of the probability p ( / )  given in (2.33) for 
three initial values of p (0.01,0.5,0.99). The state p = 0.5 is the stable equilibrium distri- 
bution. 

1 1 

( R I  ( b )  

Figure 3. Three-state system. The distances from the sides of the state triangle are the 
probabilities p I ,  p 2 ,  p,, summing to unity. ( a )  shows contours of constant entropy (S). 
The maximum of the entropy (0) is marked as well as the three saddle points (0) and 
the pure states at the corners with zero entropy (0). ( b )  shows the time variation of the 
p , ,  i.e. a phase portrait of the probability flow. There is a stable attractor at the centre (0) 
and three unstable saddle points (0). 

3. Coupling to baths and constrained systems 

In the preceding section we discussed the free dissipative evolution of the density 
operator, i.e. systems with no constraints whatsoever. In this case the density matrix 
evolves with increasing entropy towards the equipartition distribution. Such a time 
evolution models phenomenologically a system coupled in an  undefined way to a n  
undefined surrounding. ‘Undefined’ means that nothing is known about the nature 
of, and the coupling to, the surroundings. In this case any ignorance in the initial 
state (i.e. non-purity) will magnify and develop towards states with maximum uncer- 
tainty. Completely prepared states (pure states) evolve with no dissipation, i.e. they 
remain pure, which is, of course, an idealised situation. I f  we have some knowledge 
about the coupling of the system to the surroundings we are forced to incorporate this 
knowledge into the equations of motion. 
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3.1. Coupling to a bath 

The most prominent case is the coupling to a ‘bath’, which means a ‘big’ system, 
characterised by a constant mean value of an observable A and the fact that the ‘bath’ 
is not influenced by our ‘small’ system. Let us-for simplicity-assume a coupling to 
a heat bath ( A  = H). The general case will be discussed in 0 4. Intuitively the states 
with an energy exceeding the system’s average energy will tend to be depopulated, the 
others will tend to increase, which can be phenomenologically modelled by an addi- 
tional term proportional to (H - ( H ) U ) p  in the dissipative von Neumann equation. 
This term is non-Hermitian, however, which results in a non-Hermitian time develop- 
ment of p(  t ) .  Choosing the usual recipe to symmetrise by replacing H p  by the Hermitian 
operator f [ H ,  p ] +  ([ , ]+ is the anticommutator) we finally obtain 

(3.1) 

with a real coupling constant p. 
Let us first show that the canonical distribution 

1 
pc = - exp(-pH) = exp( -x - p ~ )  (3.2) Z 

with the partition function 

2 = Z ( p )  = Tr e-PH =ex (3.3) 
is a stationary solution of (3.1). 

First we note that [H, pc] = 0 and second we have 

S,  = -In pc = XU + p H  

(SA = x + P(H) 

t [ H ,  Pcl+ = HPC 

(3 .4)  

and hence 

( S c - ( ~ c ) V p c -  P(f[H, Pcl+ - (H )pc )  

= [ X ~ + P H - ( X + P ( H ) ) ~ I ~ ~ - P ( H ~ , - ( H ) ~ , )  =o. (3.5) 
We therefore identify the constant /3 with the reciprocal average energy (temperature) 
of the heat bath: 

p = l / k T  (3.6) 
The expectation value of an observable B satisfies 

in particular the time derivative of the energy is given by 

(3 .7)  

The entropy ( S )  is generally not increasing for p # 0. Starting with an initial equiparti- 
tion distribution, which has maximum possible entropy, the system will evolve towards 
the canonical distribution (3.2), which has lower entropy (S , ) .  
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Again we study the time evolution of a n-state system in more detail. In  the same 
way as for the free dissipation in § 2 we obtain the first-order system of non-linear 
differential equations 

p, = - Y [ l n p , + ( S ) + P ( H , , - ( H ) ) l p ,  (3.9) 

with H,, = ( i lH l i ) ,  which generalises (2.30). Again positivity of p is guaranteed. 

are different from zero the system evolves towards the canonical distribution (3.2) 
In a similar way to 0 2 we find stationary distributions pI = 0, i = 1, . . . , n. I f  all p, 

(3.10) 

where the E ,  are eigenvalues of the Hamiltonian. It can be easily shown that the 
eigenstates Ii) of p approach those of H for t+w,  i.e. H,,+ e,. If one or more of the 
p, are initially zero, this property is conserved (p,  - p , )  and the system evolves toward 
the unstable equilibria (saddle points) at the boundary of state space. 

Let us look at a three-state case in more detail. For simplicity we assume equidistant 
energy eigenvalues f1 = 0, E~ = E, e3 = 2e and measure energy in units of E. The average 
energy is ( H )  = pz + 2 p 3 .  Lines of constant energy ( H )  in the state space triangle are 
straight lines in this case, which are orthogonal to the boundary pz = 0 (compare figure 
6 below). Figure 4 shows the time development of the p ,  for P = In 2 (i.e. e-p =:). 
The stable canonical equilibrium distribution is ( p l ,  p z ,  p3)  = ( 4 ,  +, $) with (H) = $. 
Unstable equilibria (canonical two-state distributions) on the boundary (0) are found 
at (3, f ,  0), (:, 0, i) and (O,;, i). Structurally the flow lines are similar to the free case 
shown in figure 3(b),  however distorted. 

p, = exp( -x - PE,  1 

1 

L 

Figure 4. Phase portrait of a three-state system in contact with a heat bath (equation (3.1))  
for p = I n  2. The energies of the states 1, 2, 3 are  0, 1, 2 ,  respectively. The canonical 
(Bol tzmann) distribution ( 3 )  is a stable attractor. Unstable equilibria (8) are  situated on 
the boundaries (two-state Boltzmann distributions).  

Let us now discuss some limit cases. For an  infinitely hot reservoir ( P  = 0) equation 

In  the case P >> 1 (low temperature of the heat bath) the term -y (S- (S) )  can be 
(3.1) reduces to the free (unconstrained) case discussed in 8 2. 

neglected and (3.1) simplifies to 

(3.11) 
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with 

7 = P')'. (3.12) 

Equation (3.7) for the derivative of the energy changes to 

(3.13) d 
d r  - ( H )  = 4W2) - (W2) 

which is negative or zero for positive P, i.e. the energy decreases. 

following. 
Some important properties of the simplified evolution equation (3.11) are the 

(i) The equation is non-linear because of the term ( H ) .  
( i i )  Pure states remain pure. For 

P = l*)(*l .  (3.14) 

Equation (3.10) can be rewritten as a non-linear Schrodinger equation 

(3.15) 

This non-linear evolution equation has been proposed and studied by Gisin in a series 
of articles (Gisin 1981a, b, 1982a, b, 1983a, b, 1986). 

. 1  I*) = $ W - f . s ( H  - ( H ) U 9 ) .  

(iii) For eigenstates of H ,  (3.15) reduces to the usual Schrodinger equation. 
(iv) Stationary states ps are the projectors on eigenstates of H, because stationarity 

implies d ( H ) / d t  = O  and hence ( H * ) = ( H ) * ,  which is satisfied iff p = pn = In)(nl with 
H l n )  = &,In). (We assume a discrete spectrum with E ,  < E , + ,  for n 2 1.) 

(v) The stationary solutions pn are unstable from below, i.e. any small admixture 
of a contribution from a lower state p, (m < n )  produces a time evolution towards pm.  
The only stable state is the ground state. 

Figure 5 illustrates the evolution equation (3.10) for the example of the three-state 
system discussed above. The eigenvalues py of p approach the asymptotic stable state 
(1, 0,O). The other corners of the triangle, (0, 1 , O )  and (O,O,  l ) ,  are also stationary, 
however unstable. Comparison of figure 
in figure 6 verifies the decrease of energy 

1 

5 with the constant energy contours shown 
with time. 

Figure 5. Phase portrait of a three-state system described by the simplified evolution 
equation (3 .11 ) .  The energy is monotonically decreasing and the lowest state (0) is the 
stable asymptotic distribution. 
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1 

Figure 6.  Phase portrait of a constrained three-state system described by (3 .1) ,  where p is 
given by (3.17). The energy ( H )  is kept constant in time and the entropy increases toward 
the constrained maximum of (S) on the broken curve, which gives the positions of the 
asymptotic equilibrium states, dependent on ( H ) .  

3.2. Constrained evolution 

Under certain circumstances systems are restricted by constants. As an example we 
discuss the case where the free dissipative time evolution of a system is restricted by 
the condition that the mean energy of the system remains constant. In this case the 
parameter P in (3.1)-which acts as a kind of Lagrange parameter-is no longer 
constant. Its value is, however, given by the prescription 

(H) = constant (3.16) 

which can be rewritten as 

(3.17) 

by means of equation (3.7). 
The evolution equation (3.1) with P given by (3.17) is identical with the equation 

recently designed and proposed by Beretta (Beretta et a1 1984, 1985, Beretta 1985, 
1986), who has also studied the mathematical properties of this equation and various 
applications. (Note, however, remark (e) in 0 5 below concerning the interpretation 
of the evolution equations!) An important property is that the entropy is non- 
decreasing: 

d 
- ( S )  3 0. 
d t  (3.18) 

A proof of (3.18) can be found in Beretta et a1 (1984, theorem 6) where a direct 
expression for d(S)/dt  in terms of Gram determinants is also derived. The reader is 
referred to this work. 

For the three-state system studied above the time evolution of the p ,  follows the 
curves given by ( H )  = constant, which are straight lines in the present case (see figure 
6). During this process the entropy increases until the state reaches a relative maximum 
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of the entropy on this line. The position of these maxima can be obtained in closed 
form in this simple case and is given by 

(3.19) p ,  = i [  1 + 3( H )  - (1 + 6( H )  - 3( H ) 2 ) 1 ’ 2 ] .  

It is marked by a broken curve in figure 6. 

4. Generalisations 

The non-linear dissipative evolution equations proposed above can be easily generalised 
to the case where the coupling to the surrounding is generated by an arbitrary observable 
A instead of H, or-more generally-by various observables A,.  Following Beretta 
(Beretta et a1 1984, 1985, Beretta 1985, 1986) we call these A,  the ‘generators of 
motion’. An example of such a set of A ,  is provided by A 2 =  H, A 3 =  N, which is a 
particle number operator. p2 = p = 1/ kT is again the temperature parameter and 
P3 = -pp is proportional to the chemical potential p. 

Equation (3.1) generalises in this case to 

1 
P = p , P l - Y  c P”(%A”,PI+-(A”)P) (4.1) 

”PI  

with the identifications 

A I = S  (4.2) 
and 

p1  = -1. (4.3) 
The time dependence of expectation values (equation (3.6)) is generalised to 

d 1 
d t  Y 
- ( B ) = z ( [ B ,  H D - y  Py(4([B9 A ” I + ) - ( m 4 ” ) ) .  (4.4) 

In the case of a constrained time evolution, where the mean values (A, )  of some of 
the observables A, are constant-we assume that the A,  are not explicitly time 
dependent-the parameters py can be evaluated from (4.4): d(A,)/dt = 0 gives 

1 
P, = ( - ( [ A , ,  1fiY HI)+ ”= c 1 P M A , ,  A ” I + ) - ( A , ) ( A J ) )  ( ( A W A F W 1  (4.5) 

U#, 

which is the generalisation of (3.17) (note that (HS) = (SH)). 
In some important cases the A ,  for Y # 1 commute with each other and with the 

Hamiltonian H, which may be a member of the A,, of course. In this case the A ,  are 
said to be ‘in involution’. Then (4.5) simplifies to 

(note that (A,Al )  = (A,S) = (SA,) = ( A I A , ) ) .  
For a completely constrained system, where all the ( A F ) ,  p # 1, are held constant, 

(4.5) and (4.6) constitute a set of linear equations for the p,, which must be solved. 
In this case equation (4.1) turns out to be identical to the non-linear evolution equation 
proposed by Beretta (Beretta et a1 1984,1985, Beretta 1985,1986), who has also shown 
that in this case the entropy is non-decreasing. 
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The generalised von Neumann equation (4.1) can be written in a notationally 
simpler form by introducing the identity as an additional observable 

A" = 1. (4.7) 

Equation (4.1) is now 

and (4.4) is replaced by 

Conservation of probability Tr p = constant gives the constraint 

(A,) = constant (4.10) 

which determines the value of P o .  From (4.9) we obtain for B = A0 

or 

(4.11) 

(4.12) 

Inserting (4.1 1) into (4.8) we rediscover our previous equation (4.1). 
Let us now look at stationary states for the case of a set of A,, which is in involution, 

i.e. [ H ,  A , ]  = 0, [ A Y ,  A , ]  = 0 for v, p # 1. The stationary state ps will be a function of 
the A , ,  which commutes with all the A ,  and with H. is = 0 in (4.8) then gives 

c PyA,ps=O. 
"20 

If ps is assumed to be invertible, this implies 

c P A = O  
" P O  

and therefxe ,  with A ,  = S = -In ps, 

(4.13) 

(4.14) 

which is the well known generalised canonical distribution of quantum statistical 
mechanics. For the case A2 = H, A3 = N, ps is the grand canonical distribution and  

epcl = Tr exp (- pL,A , , )  
" Z 2  

(4.16) 

is the generalised partition function. 
In addition to the stable equilibrium distribution (4.15) various unstable distribu- 

tions are possible ( p  not invertible, i.e. p has zero eigenvalues), which are on the 
boundary of the state space, as discussed for the three-state system in § 3. 
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5. Concluding remarks 

In the present paper we have proposed a novel equation for the time evolution of the 
density operator, which allows for a dissipative relaxation towards a steady-state 
distribution. The proposed generalised von Neumann equation is admittedly ‘derived’ 
heuristically. I t  has, however, an intrinsic simplicity which suggests that the equation 
may tun: out to be a useful concept. 

Of course, many things have still to be filled in, such as, for instance, the following. 
(a) The existence and uniqueness of solutions. 
(b) The physical relevance of the generators of motion. 
(c) The derivation of the generalised von Neumann equation in the framework of 

subsystem dynamics. 
(d) Application to interesting physical systems, as for instance the damped har- 

monic oscillator, spin relaxation and spin resonance. 
(e) Last, but not least, it should be mentioned that the authors are aware of the 

fact that the proposed non-linear equation of motion for the density matrix is likely 
to induce conceptual and interpretational difficulties because the non-linear time 
evolution of the density operator is no longer compatible with the interpretation of 
the density operator as an incoherent mixture of pure states. 

Work along these lines is necessary and currently in progress. 

Appendix. Mixing enhancement 

Let p and p’ be two density matrices with eigenvalues p ,  and p : ,  respectively, which 
are arranged in decreasing order. 

k k 

i = l  , = 1  

are the partial sums. We call p’ more mixed than p if 

zl, == x k  k =  1 , .  . . , n 
and a time evolution t -+ t ‘  is said to be mixing enhancing if p (  t ’ )  is more mixed than 
p (  1 ) .  p’ more mixed than p implies S ( p ’ )  2 S ( p ) ,  i.e. mixing enhancement is a stronger 
property than entropy production. Further properties of the concept of mixing enhance- 
ment are discussed in Wehrl’s review article on properties of entropy (Wehrl 1978). 

The free dissipation (2.12) is mixing enhancing because 

with 

The expression 
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is monotonically increasing with k. The monotonicity of the pi( pi L P k + l ,  i s k + 1) 
implies 

and therefore 

which can be rewritten as 

-In P k + l  ( P k .  (A9) 

Multiplying with P k + l / x k  and adding (Pk on both sides we have 

or 

We therefore have 

Finally we see from (A4) and (A12) 

i.e. the time evolution is mixing enhancing. 
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